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FOR CERTAIN TYPES OF NON-NORMAL DISTRIBUTIONS

Stephen L. Koffler
New Jersey Department of Education

Paper presented at the 1976 annual meeting
of the American Educational Research Association

Introduction

The problem of discrimination (or classification) has always

been one of major concern to the behavioral scientist, and one for

which there has not always been a satisfactory solution% The dis-

crimination problem arises when the researcher must rationally assi

an individual or object to one of a finite number of populations

on the basis of a series of measurements obtained on that individual
--

or object,as well as any other pertinent information available.

Fisher (1936) presented the first clear solution to the classi-

fication problem. Fisher's solution, called the Linear Discriminant

Function (LDF), was the linear combination of the measurements which

maximized the ratio of the difference between the sample means

the siandard deviation within samples. The inception of a theoretical

solution to the problem emerged when the hypothesis testing concepts

of Neyman and Pearsbn-were adapted to the discrimination problem by

Welch (1939). Welch noted that discrimination procedures classifyin

new p-dimensional observations were equivalent to partitionings of

the sample space into mutually exclusive and exhaustive regions R.

For a specific partitioning of the sample space

tion Z to be classified is assigned to populationS4.

sional point lies in region Ri. Using this rationale
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two possible types of errors that can be committed for the two

population problein when classifying the observations.

The observation can be classified as originating
from population S1 when it actually comes from S2.

2. The observation can be classified as originating
from population S2 when it actually comes from Sl.

Associated with each of these errors is a probability of committing

the error (called the probabilities of misclassification). Welch

(1939) proposed that the optimum classification procedure be that

procedure whichEartitions the sample space in such a manner that

the corresponding probabilities of misclassification are minimized.

Welch showed that the optimal partitioning is effected by form-

ing the ratio of the densities of the two populations, f1(x)/f2(x).

The observation to be classified is assigned to population S1 if the

value of the likelihood ratio is greater than some appropriately

determined constant k, and the observation is assigned to population

S
2
if the value of the likelihood ratio is less than k.

Anderson (1951) has shown that the discrimination problem can

be thought of as a problem of "statistical decision functions":

There are a finite number of hypotheses, each hypothesis stating

that the distribution of the observation is a specified one; one of

the hypothesis is not rejected, the remainder are. Anderson (1951)

has shown that a good classification procedure is one which minimizes

the "cost"(loss function) of misclassification associated with the

procedure. The decision theoretic objective is one of determining

an appropriate classification rule that will minimize the risk

(expected loss) associelted with the procedure.

The procedure that minimizes the risk function for.given a priori
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probabilities (a priori probability qi that the observation to be

classified belongs to population Si) is a Bayes procedure. When

the a priori probabilities are not known, Von Mises.(1945) has shown

that the procedure which allows the maximum of the minimum proba-

bility of correct classification (the minimax procedure) effects the

best partitioning of the sample space.

In either situation (whether the a priori probabilities are

known or unknown), the form of the best classification proCedure is

the ratio of the density functions of the populations. When the

a priori probabilities are equal and the costs of misclassification

are equal, the best procedure is such that an observation Z is classi-

fied as belonging to S1 if f1(z)/f2(z) > 1 and Z is classified intO

S2 if f1(z)/f2(z) < 1. When the likelihood ratio is identical to one,

a randomized procedure is used to classify the observations.

Frequently behavioral scientists collect data that is represen-

tative of multivariate normal distributions. For the two population

situation, when the populations are multivariate normal with a common

variance-covariance matrix and known mean vectors, the optimal classi-

fication procedure (the ratio of the densities) simplifies to:

-1 -1L = (e1-122) - 1/2(p1+p,)'E (p,p,-) (1)
4-4 ... ~4

The first term of (1) is that to which Fisher's LDF reduces if

the population means and common variance-covariance matrix are known.

Anderson (1951) has shown that the optimal probability of misclassi-

fication associated with (1) assuming equal costs of misclassification

and equal a priori probAbilities, is 0(-A/2), wheke'

A
2

= (el-e2),-1E (El-112) and 0(-) is the ordinate of the normal dis-

tribution function.
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When the variance-covariance matrices of ihe two multivariate

normal populations are not identical, the form of the likelihood

ratio is not a linear function, but instead a quadratic function,

called the Quadratic Discriminant Function.

QDF = 1/2Z'(E-1-E -1)Z + (p E - p E 1)Z +
(2)

' -11/2(Ip1Ei P1 2 PZ2 P2] - logIE2/E1l)

It is not unusual that researchers must consider situations in

which the distributions from which their data are drawn are not

completely specified, but instead are known except for one or more

parameters. When these circumstances arise, the unknown parameters

of the distributions must be estimated from samples. Then classifi-

cation procedures are developed which are based on the sample

estimates.

To determine appropriate sample based,classification procedures

it is appropriate to select those procedures whose risk functions

asymptotically approach the risk function of the optimal procedure,

(i.e., those sample based procedures which are consistent). Hoel

and Peterson (1949) intuitively reasoned that the best sample based

procedure would be of the type of the likelihood ratio in which the

sample estimates replaced the unknown parameters(called a "plug-ie

procedure). Fix and Hodges (1951) showed that the "plug-in" procedure

of Hoel and Peterson was a consistent procedure and was the most

appropriate sample based technique to use.

For the case in which the parameters of the multivariate normal

distribution are unknown,Anderson(1951) developed a statistic (W)

which is the "plug-in" analogue to the LDF. The W statistic is of

5



5

the form of (1) in which the maximum likelihood estimates replace

the unknown parameters. The first term of Anderson's W statistic

is the form of the LDF first obtained by Fisher (1936). Using

similar arguments, the form of the QDF when based on sample estimates

is identical to (2) with Xi replacing and Si replacing Ei.

Historically, the Linear Discriminant Function (or the Anderson

W statistic) has been used almost exclusively for discrimination

problems regardless of whether the assumption of multivariate

normality of the underlying populations has been satisfied. However,

Lachenbruch, Sneering, and Revo (1973) have shown that-the LDF is

clearly not a robust procedure when used to classify observations

from non-normal distributions. Because of this it is inappropriate

to use the LDF with data that is not representative of a multi-

variate normal distribution. When the samples are drawn from popula-

tions that are of some known distribution, the optimal procedure is -

Vle ratio of the densities. In most situations, however, information

is obtained from samples drawn from unknown populations and alter-

native distribution-free classification methods should be employed.

The most desirable type of nonparametric classification pro-

cedure is a procedure Which is consistent with the likelihood ratio

procedure. Fix and Hodges (1951) considered a solution to the non-

parametric discrimination problem based on estimates of the unknown

densities, and used these estimates as "plug-in" versions of the

likelihood ratio procedure. Alternative types of nonparametric

classification procedures suggested include Nearest Neighbor type

procedures and certain methods based nonparametric rank tests.

It was the purpose of the research described in this paper to

6
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empirically contrast the discriminatory power of alternative two

population classification procedures to the classical LDF when

classifying data that originates from certain types of non-normal

distributions.

Model and Methodology

Let X
1
and X

2
be two absolutely continuous p-dimensional random

variables; their probability density function given by fl(x) and

f2(x), respectively. Using Monte Carlo techniques, samples from

four types of p-dimensional distributions, all of whose dimensions

were independent, were generated for the two population discrimina-

tion problem. The four distributions included the multivariate

normal distribution and non-normal representatives-from three classes

of distribution: 1) distributions with finite range; 2) distri-

butions with semi-infinite range; and 3) distributions with infinite

range.

The three non-normal distributions were generated from the

Johnson (1949) system of distributions. The distributions were the

Log Normal distribution, the Logit Normal distribution, and the

Inverse Hyperbolic Sine Normal distribution. To obtain the required

non-normal samples, normally distributed random variables were

generated and the appropriate inverse transformation performed. The

Johnson system of transformations and inverse transformations is

summarized in Table 1.

In Table 1, the variable y is normally distributed with given

mean and variance; the variable x is distributed according to the

appropriate non-normal distribution. To obtain random points from

a normal distribution, uniform random deviates were generated from
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the IBM Scientific Subroutine Package. Then using the Central Limit

Theorem, the normally distributed random data points were determined. 1

TABLE 1

TRANSFORMATIONS (AND THEIR INVERSES)
THAT GENERATE THE JOHNSON (1949)

SYSTEM OF DISTRIBUTIONS

Distribution Transformation Inverse

Log Normal y=log x 0<x<w x=EXP(y)

Logit Normal y=log(x/1-x) 0<x<l x=EXP(y/l-y)

Inverse Hyperbolic y=Sinh-1(x) -co<x<ce x=Sinh(y)
Sine Normal

The p-dimensional normal distributions which were used to generate

the non-normal distributions had the identity matrix as their

variance-covariance matrix. The mean vector for population S1 was

(11,0, . . . , 0) and for population S21 (0, . . . , 0). For each

of the four distributions, samples were generated for each combi-

nation of sample size (n = 64, 200, 729), first component of the

mean vector for population Sl (i = 1,2,3), and dimensionality

(p = 2,3).

For each of the eighteen possible combinations of the parameters

for each of the four distributions, six different classification

rules were developed. The classification procedures considered were:

1. Linear Discriminant Function (Anderson W Statistic)
2. Quadratic Discriminant Function

1
There has been in the past some criticism leveled as to the

validity of IBM's Scientific Subroutine Package random number, generator
Using Chi-Square tests described by MacLaren and' Marsaglia (1965), it
was determined that the uniform random deviates generated from the
program were random. Further, using the Kolmogorov-Smirnov test, it
was determined that the random variables obtained from the uniform
random deviates were representatives of a normal distribution.
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3. Nearest Neighbor with Probability Blocks
4. Parzen-Cacoullos Density Estimator
5. Loftsgaarden-Quesenberry Density Estimator

6. Gessaman Density Estimator

Linear Discriminant Function

The Anderson W Statistic was used, assuming equal a priori

probabilities and equal costs of misclassification. For this situa-

tion, the Anderson W statistic is of the form:

W = Z'S-1011-X2) - 1/2(Xl+X2)1S-1(5:51-5:52 (3)

The observations are classified as belonging to S1 if W > 0; as

belonging to S2 if W < 0.

Quadratic Discriminant Function

Table 2 illustrates the means and variances of the three non-

normal distributions. Clearly, the variances for S1 are markedly

different from that for S2'
Therefore, it was appropriate to con-

sider claesification according to the Quadratic Discriminant FunctiOn.

The form of the QDF, assuming equal a priori probabilities and equal

costs of misclassification is:

QDF = 1/2V(S
-1

-S
-1

)Z S )z +

- -1- - -1-
1/2((XiSi - X2S2 X2) logIS2/S1))

(4)

The new observations are classified into S1 if Q > 0; into S2

if Q < 0.

Nearest Neighbor with Probability Blocks

The Nearest Neighbor with Probability Blocks procedure is based

on distribution-free tolerance regions.. To obtain the necessary

probability blocks, a procedure outlinelby Gessama6 and Gessaman

(1972) was employed. Assume without loss of generality that

p = 2--the generalization to general to space is immediate. L



TABLE 2

MEANS AND VARIANCES OF THE NON-NORMAL DISTRIBUTIONS
FOR SPECIFIED MEANS OF THE NORMAL DISTRIBUTION

(a
2

= 1)a

Log Normal
II a

2
. Ix . x

0 1.65 4467
1 4.48 34.51
2 12.18 255.02
3 33.12 1884.32

Logit Normal

0 .50 .043
1 .70 .029
2 .84 .019
3 .94 .001

Inverse Hyperbolic Sine Normal

0 0 3.19
1 1.94 9.65
2 5.98 74.63.
3 16.52 471.94

SOURCE: Lachenbruch, Sneeringer and Revo. Robustness
of the Linear and Quadratic Discriminant Function to Certain
Types of Non-Normality. Communications in Statistics,
1973, 1, 54.

a 2ar is the variance of the underlying normal distri-
bution.'

p is the mean of the underlying normal distribution.

nx is the mean of the transformed non-normal variatee

a
2 is the variance of the transformed non-normal variate.

10
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k = kn = til), the greatest integer less than or equal to

n(p-1/p+1)

The observations were ranked along the first coordinate and

the plane partitioned into [(n/41/ 2) "blocks" by making [(n/W112] -1

evenly spaced "cuteon the ranked observations. The cut-point

belongs to the right boundary of the block of which it forms. Since

the distributions are absolutely continuous, ties occur with proba-

bility zero.

The observations used to make the cuts were deleted. Then

taking each block, the remaining observations were partitioned into

[(n/k)
1/2

] subblocks by making [(n/k)
1/2

] - 1 evenly spaced cuts

on the second coordinate. The plane was then partitioned into

[(n/k)1/2] probability blocks, each containing k-1, k, or k+1

observations.

Once the probability blocks were determined, the observations

in X
1

and X
2
used to develop them were classified into the blocks.

A block was considered to be an X
1
block if the majority of the

observations in the block were X1
observations; an X

2
block if the

majority of the observations in the block were X2 observations. If

a block had an equal number of observations from both populations,

the block was classified according to its neighboring blocks.

Once the membership of each of the blocks was ascertained, the

new observations were classified and the number of misclassifications

determined.

Density Estimators
A

For f
1
(x) and f

2
(x) consistent estimators of f

1
(x) and.f2 (x),

respectively, the procedure used was the ratio of the 'density esti-
-

11
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mators. The new observations are classified into S
1

if the ratio is

greater than one; into S2 if the ratio is less than one.

Parzen-Cacoullos Density Estimator

1
n x-yA

fi (x) = E K(h() (5)
nh P(n) j=1

where h(n) = n and K(w) = EXP(- fw2 w23/2)/(2101/2
1

Loftsgaarden-Quesenberry Density Estimator.

A kn-1
f(x) - (6)nA

r
n,Z

P7rP/2where k
n

= n1/2 and A
r,Z

-
2r
Pv(p/2) and r is the distance from the new

observationtotheknthclosest xl .as determined by Euclidean distance.

Gessaman Density Estimator

A k
n

fi (x) (7)

where k
n

= [n(P-1)/(P+1)] and D is the area of the bounded block

into which the observations falls. When the observation falls into

an unbounded block, the Nearest Neighbor procedure is used to

classify the observation.

Procedures

Each of the 72 combinations of sample size, dimensionality,

mean vector, and disfribution were used to form classification pro-

cedures for the six discrimination rules. Then 500 new observations

from each of the populations were generated and classified aCcording

to the rules established. Ten iterations of the process were per-

formed when n = 64 or n = 200 and five iterations were performed
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when n = 729.
2 The proportion of misclassified observations from

each population and the total proportion of misclassified observa-

tions were determined and compared.
3 All computer programs to

generate the data.and classification procedures were written in

the FORTRAN IV programming language.

Once the proportion of misclassification was obtained, there

were certain hypotheses tested. For two multivariate normal

distributions with identical variance-covariance matrices, the

optimal classification procedure is such that the respective

probabilities of misclassification are equal (Anderson, 1951).

Because of this, the first hypothesis concerned the empirical

probabilites of misclassification from each population for each

of the six procedures (Ho: P[1/2) = P[2/1)).

The second hypothesis concerned the overall probability of

misclassification for the procedures. For each of the parameter

combinations, the hypothesis of equality of the six proportions

was tested. When the hypothesis was rejected the Marscuilo (1966)

analogue to the Scheffe multiple comparison theorem was used to

determine significant pairwise contrasts.

A similar testing procedure was used to determine if signi-

ficant differences existed between the overall proportions of mis-

classification for the three.sample sizes.

Results

Log Normal Distribution (p = 2)

The results for the two dimensional Log'Normal diitributed

2Because of the computer time necessary for the iterations
when n = 729, and because of a computer cost factor, it was not
feasible to perform more than five iterations.

3P(I/J) is the proportion of observation from S. misclassi-
fied into-S

I' 13



random variables are presented in Table 3. The Log Normal distri-

bution is an example of a semi-infinite range distribution. 4

u = 1. The performance of the LDF and QDF was significantly inferior

to the four nonparametric procedures. However, there was no signif-

icant difference between the,overall proportions of misclassification

for the four nonparametric procedures except when n = 64. When

n = 64, the overall proportion of misclassification for the Nearest

Neighbor and Gessiman techniques was significantly smaller than for

the Parzen-Cacoullos and Loftsgaarden-Quesenberry procedures. For

all procedures there was no significant difference between the over-

all proportions of mpclassification when n = 200 or n = 729. However,

there were differences between n = 64 and the other two sample sizes.

Therefore, a sample size of 200 was neCessary for the criterion sample.

u = 2. The pattern of results when u = 2 was consistent with the

results when u = 1. The performance of the LDF and the QDF were both

significantly worse than the four nonparametric procedures. However,

there was no differences between the misclassification proportions for

the four nonparametric procedures. A minimally sufficient criterion

sample size was n = 200.

= 3. When n = 200 or n = 729, the LDF's performance was signi-

ficantly worse than the other five procedures; however, there was no

difference between the proportions of misclassification for the

other five procedures. When n = 64, the only procedures that were

4
In the tables the following abbreviations were used: LDF--

Linear Discriminant Function; QDF--Quadratic Discriminant FUnction;
NN--Nearest Neighbor with Probability Blocks: L-Q--Loftsgaarden-
Quesenberry Density Estimator; P-C--Parzen-Cacoullos-Density Esti-
mator;GESS--Gessaman Density Estimator.

14
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equivalent were the Nearest Neighbor and Gessaman and the Parzen-

Cacoullos and Loftsgaarden-Quesenberry density estimators. Again,

a sample of size n = 200 was sufficiently large.

Logit Normal Distribution ( = 2)

The results for the two dimensional Logit Normal distribution

are presented in Table 4. The Logit Normal distribution is a member

of the family of finite range distributions.

= 1. For the two larger sample sizes, there was no significant

difference between any of the six procedures. However, only for the

Gessaman procedure when n = 200 and the Nearest Neighbor procedure

when n= 729 was the hypothesis of equality of the respective propor-

tions of misclassification (P[1/2] and P[2/1]) not rejected. There-

fore, for those situations, the Gessaman and Nearest Neighlwm ':,ro-

cedures were the most desirable. When n = 64, only the LDF and the

Loftsgaarden-Quesenberry procedure were significantly different from

each other. A sample size of 200 was sufficiently large for the

criterion sample.

u = 2. The results when u = 2 resembled those when u = 1. There

was no difference among the six overall proportions of misclassifi-

cation when n = 64 or n = 729. When n = 200, there was a significant

difference; however, there were no significant pairwise contrasts.

The Nearest Neighbor and the Gessaman procedures were the most

desirous to use because the hypotheses of equality of P(1/2)_and

P(2/1) was not rejected when n = 200 and n = 729 for those Firocedures.

Again, a sample size of 200 was sufficient.

u = 3. The results were markedly different when u = 3. When .11 = 64

and n = 200 the Loftsgaarden-Quesenberry procedure and the QDF were

16
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the two best performing procedures; when n = 729 all but the LDF

and Parzen-Cacoullos procedures were desirable.? For most of the

procedures a sample of size 200 was sufficient; in some instances

a sample of size 64 was large enough.

Inverse Hyperbolic Sine Normal Distribution (p = 2)

The results for the Monte Carlo simulation for the Inverse

Hyperbolic Sine Normal distribution when p = 2 are presented in Table

5. The Inverse Hyperbolic Sine Normal distribution is a member of

the infinite range family of distributions.

= 1. Except for the QDF, the remaining five procedures were equally

effective in classifying the observations for all the samples. Except

for the Parzen-Cacoullos density estimator and the Loftsgaarden-

Quesenberry density estimator, a sample of size 64 was sufficiently

large. For the two density estimators, a sample of size n = 200

was necessary.

p = 2. The four nonparametric procedures uniformly misclassified

fewer observations than the LDF and QDF for all sample sizes. Since

the hypothesis of equality of P(2/1) and P(l/2) was not rejected

for the Gessaman procedure (n = 64 or 200) and the Nearest Neighbor

procedure (n = 64), in those instances, those procedures were the

best procedures to use. Except for the LDF a sample of size n = 200

was sufficient.

p = 3. For the two larger sample sizes, the four nonparametric

procedures were significantly better than the parametric ones, but

not significantly different from each other. Thd Nearest Neighbor-
. -

and Gessaman procedures were the best to use in this situation because

when n = 200 and n = 729, the hypothesis of equality of P(2/1) and

18
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P(1/2) was not rejected. The necessary sample size varied with the

specific procedure.

Normal Distribution (p = 2)

The results for the two dimensional normally distributed random

variables are presented in Table 6. Because all of the assumptions

of the LDF are satisfied, it is expected that the LDF would be the

optimal procedure in this situation. Hence, the use of the normally

distributed random variables serves as a check on the procedures.

p = 1. As to.be expected, the petformance of the LDF approached the

optimal probability of misclassification. Additionally, as the

sample size increased, the performance of the QDF approached the LDF

since the variance-covariance matrix approached the identity matrix.

There was no difference between the performance of any of the proce-

dures, and a sample of size 64 was sufficiently large to develop an

efficient classification rule.

p = 2. Similar to the results when p = 1, there were no significant

differences among the six procedures. Again a sample size of n = 64

was sufficient.

p = 3. The performance of the procedures was equivalent except for

the proportions of the Nearest Neighbor and Gessaman procedures

whidh were significantly worse than the other procedures. Except

for the Nearest Neighbor and Gessaman procedures, a sample of size

64 was sufficient; for those two procedures a sample size of 729

was necessary.

Log Normal Distribution (p = 3)

The results fot the three dimensional Log Ndrmal random

variables are presented in Table 7.
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p = 1. Except for the QDF, the remaining five procedures were

equivalent in terms of their overall proportion of misclassified

observations. When n = 64, the hypothesis of equality of P(2/1)

and P(1/2) was not rejected for the Nearest Neighbor or Gessaman

procedures (it was rejected for the other,procedures). However,

because of the significance between both the Nearest Neighbor and

Gessaman procedures based on differing sample sizes, it appeared

that even with as large a sample size as n = 729, there was insta-

bility in the two procedures. For the LDF, QDF, and Parzen-

Cacoullos procedures a sample of size 64 was sufficient; for the

Loftsgaarden-Quesenberry procedure a sample of size 200 was

necessary.

= 2. The performance of the four nonparametric procedures was

significantly better than the two parametric procedures. The hypoth-

esis of equality of P(1/2) and P0/1) was not rejected for n = 200

or n = 729 for the Nearest Neighbor and Gessaman procedures. For

those two procedures a sample of at least 729 was necessary. For

the remaining procedures a sample of size 200 was sufficient; for

the Loftsgaarden-Quesenberry procedure a sample of size 64 was

sufficient.

p = 3. The Loftsgaarden-Quesenberry procedure was uniformly the

best procedure to use while the LDF was uniformly the worst. A

sample of n = 64 was sufficient for the Loftsgaarden-Quesenberry

'procedure. For the remaining procedures a sample of size 200 was

sufficient; for the Nearest Neighbor and Gessaman procedures, a

sample of size 729 was necessary.

Logit Normal Distribution (p =

The three dimensional Logit Normal results are presented in

2 3
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Table 8.

u = 1. Unlike the log normal distribution's results, all of the

proportions of misclassification in this situation were equivalent.

Because for the two larger samples the hypothesis of equality of

P(2/l) and P(l/2) was not rejected for the Gessaman procedure that

procedure was the optimal procedure to use. When n = 729, the

hypothesis was also not rejected *for the Loftsgaarden-Quesenberry

procedure; therefore, in that situation, the Loftsgaarden-Quesen-

berry procedure would be desirous to use.

u = 2. When n = 64 or n = 200 any of the procedures except for the

Nearest Neighbor and Gessaman procedures would be appropriate to use.

When n = 729, the Nearest Neighbor and Gessaman procedures were the

best to use. For all of the procedures except for the Nearest'

Neighbor and Gessaman procedures a sample of size 64 was sufficient;

for those two procedures a sample of size 729 was necessary.

p = 3. When n = 64, the QDF was the best procedure to use. However,

since the proportion of misclassification when n = 64 was signifi-

cantly worse than when n = 729, a sample of size n = 64 was not

large enough. Similarly, when n = 200 either the QDF or Lofts-

gaarden-Quesenberry procedures were the best of the six. However,

since the procedure when n = 200 was different than the procedure

when n = 729 for the Loftsgaarden-Quesenberry procedure-, a sample

of size 200 was not sufficiently large.

Inverse Hyperbolic Sine Normal Distribution (p = 3)

The results of the three dimensional Inverse Hyperbolic Sine

Normal distribution are presented in Table 9.

li = 1. When n = 64 or n = 200 anv of the procedures except for

y

QDF and Parzen-Cacoullos procedures was appoOkiete:foruse.-

TiZggkea4 '43'414, AqTY,!-A
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n = 729 any of the procedures except for the QDF was adequate. For

the two larger sample sizes, the Nearest Neighbor and Gessaman

procedures were the best procedures to use because the hypothesis

of equality of the respective proportions of misclassification was

not rejected. For the four nonparametric procedures a sample of

size 200 was necessary; for the QDF and LDF a sample of size 64 was

sufficient.

= 2. When n = 64 the Loftsgaarden-Quesenberry procedure was the

optimum to use; when n = 200 either the Loftsgaarden-Quesenberry

or the Parzen-Cacoullos; when n = 729 the Nearest Neighbor and the

Gessaman procedure. The parametric procedures were significantly

worse than the nonparametric ones.

= 3. The Loftsgaarden-Quesenberry and Parzen-Cacoullos procedures

were the best procedures to use in this situation. For this situa-

tion, a sample of at least 729 was necessary.

Normal Distribution (p = 3)

The results of the three dimensional normally distributed

random variables appear in Table 10.

= 1. Because the assumptions of the LDF were satisfied, it was

the best procedure to use in this situation. However, similar to the

case when p = 2, any of the procedures could be effectively used.

A sample of size n = 64 was sufficient.

1.1 = 2. Again, because the assumptions of the LDF were satisfied,.

the LDF was the optimal procedure to use. When n = 64 or n = 200,

any of the procedures except for the Nearest Neighbor and Gessaman

procedures would be effectively substituted for the LDF. When
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= 3. There was no difference between the performance of any of

the six procedures. A sample of size n = 64 was sufficient to obtain

consistent results with the optimal proportion of misclassification.

Conclusions

This study has shown that when observations are drawn from non-

normal distributions, certain nonnarametric discrimination proce-

dures more appropriately classify the observations than does the

parametric LDF (or QDF). Even when the data to be classified is

from multivariate normal distributicns with equal variance-covariance

matrices, the performance of certain of the nonparame:Eric procedures

parallels that of the parametric rrocedures. Therefore, usage of

the nonparametric procedures is mandated regardless of the distri-

bution functions describing the data.

The following are comprehensive summaries and conclusions

drawn from the results of the studv concerning the six types of

classification procedures under consideration.

Linear Discriminant Function

Because of the theoretical development of the Linear Discri-

minant Function, the performance of the LDF was most superior for

the data from the multivariate normal distributions with equal

variance-covariance matrices. For multivariate normally distributed

random observations, a sample size of 64,was sufficient to effect

an approoriate classification rule for the LDF.

For non-normal distributed random data, the use of the LDF was

not appropriate. The LDF's overall proportion of misclassificatión

was largest of the six types of classification procedures for the
. .

Lnm Mnrmal ant-1 Tr-rut:arc= Uvrrunrh^14,..
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the Logit Normal distribution, the performance of the LDF was

comparable to the nonparametric procedures. Additionally, for all

of the three non-normal distributions, there was an extreme inElation-

deflation effect concerning the respective proportions of misclassi-

f:.zation for each population; one of the proportions was much larger

than the optimal level, and one was much lower.

For data whose distribution is unknown, it would be unwise to

make use of the Linear Discriminant Function to classify the observa-

tions.

Quadratic Discriminant Function

The Quadratic Discriminant Function is the analogue to the LDF

when the variance-covariance matrices are unequal. For the results

of the study based on the multivariate normally distributed random

variables, the observations were drawn from multivariate normal

distributions with equal variance-covariance matrices. Since the

QDF, given equal variance-covariance matrices becomes the LDF, the

performance of the QDF paralleled that of the LDF--especially as

the sample size increased for the criterion sample (since the

estimated parameters more closely resemkae the populaton parameters).

Similar to the LDF, it would be unwise to use the QDF to classify

observations from unknown distributions.

Nearest Neighbor Procedure with Probability Squares

When the dimensionality was two the Nearest Neighbor procedure

performed well for all of the distributions. There was no discernaki.

difference between the performance of the NeareA Neighbor procedure

for any of the distributions.

. -

When p = 3, the performance Of the Neares;t:Neighbor procedure:-,
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declined significantly. This decline was not due to the mode of

classification of the procedure, nor to an inherent fault in the

procedure, but instead due to the development of the probability

blocks and the size of the criterion sample.

The number of probability blocks is a function of the sample

size; the specific function established so that there is a suffi-

cient range of observations in each block. When p = 2, the block

development function was sufficient (there are enough observations

in each block so that the range of observations-that would belong

to a particular block was widespread). Hence, the Nearest Neighbor

procedure when p = 2 was well developed. However, when p = 3,

because of the desire to maintain the same three criterion sample

sizes that were used when p = 2, there was no block development

function that would effect as appropriate a set of probability

blocks as when p = 2. For this reason, the Nearest Neighbor pro-

cedure when p = 3 was less effective than when p = 2.

When p = 2, in most cases there was a significant difference

between the mean proportion when n = 64 and that when n = 200 or

n = 729. For this reason, the use of the procedure for small samples

may not be desirable. However, because of the desirable property

that the Nearest Npighbor procedure is completely, distribution-free,

because of the relative ease with which it can be developed, and

because of its generally good performance, the nse of the Nearest

Neighbor procedure is appropriate and suggested for any type of

classification problem for which the underlying distribution is un-

known.

Parzen-Cacoullos Density Estimator
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approximates that of the LDF and QDF since the Parzen-Cacoullos

estimator is asymptotically a multivariate normal density (Parzen,

1962). However, because of its normarametric features, the per-

formanCe of the Parzen-Cacoullos procedure was somewhat better than

the LDF and QDF.

The performance of the Parzen-Cacoullos density estimator was

equivalent for each of the three non-normal distributions, and as

to be expected, its performance was best for the multivariate

normally distributed random variables. For the non-normal distri-

butions, the performance of the Parzen-Cacoullos density estimator

procedure was not significantly different from the other non-

parametric procedures.

Loftsgaarden-Quesenberry Density Estimator

In addition to the Nearest Neighbor procedure, the Lofts-

gaarden-Quesenberry procedure was that procedure of the six which

most effectively classified the observations. There was no differ-

ence between the discriminatory power of the Loftsgaarden-Quesen-

berry procedure for any of the four distributions.

For the Nearest Neighbor procedure, when n = 64, the mean

proportion of misclassified observations was in general significantly

different than when n 200 or n = 729, suggesting that a criterion

sample size of 64 was not sufficient for the Nearest Neighbor proce-

dure. However, the respective mean proportions of misclassification

for the Loftsgaarden-Quesenberry procedure when n = 64 was not

different from the mean proportion when n = 200 or n = 729.

When the criterion sample is small, the use of the Loftsciaarden-

_ _ ! -
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to obtain a criterion, either the Nearest Neighbor or the lofts-

gaarden-Quesenberry procedure would suffice.

Gessaman Density Estimator

The Gessaman procedure presupposes the existence of probability

blocks. Therefore, because the Nearest Neighbor with probability

blocks procedure has been shown to be such an effective classifica-

tion procedure regardless of the type of distribution from which the

observations come, it would appear that the use of the Gessaman

procedure is unnecessary.

-

For the instances in which the distributions under consider-

ation were widely separated, the Gessaman procedure became almost

identical to the Nearest Neighbor procedure; for the cases in which

the probabilities of misclassification for the Gessaman procedure

are different from that for the Nearest Neighbor procedure, at no

time is the mean proportion of misclassification for the Gessaman

procedure significantly less than the mean proportion of misclassi-

fication for the Nearest Neighbor procedure.

Summary.

In general, based on the results of this study, the Nearest

Neighbor and Loftsgaarden-Quesenberry classification procedures

were the two types of procedures which uniformly best classified

observations from unknown distributions. These two discrim4nation

techniques should be considered as viable alternatives to the para-

metric Linear Discriminant Function,especially when the distributions

of the observations are unknown.
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